Капиллярная дефектоскопия
ОСНОВНЫЕ СВЕДЕНИЯ
Капиллярные методы контроля основаны на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплошностей материала объектов контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.
Капиллярный контроль предназначен для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности (для дефектов типа трещин) и ориентации по поверхности. Этот вид контроля позволяет диагностировать объекты любых размеров и форм, изготовленные из черных и цветных металлов и сплавов, пластмасс, стекла, керамики, а также других твердых неферромагнитных материалов.
Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.
Капилляр, выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностью, а соединяющий противоположные стенки объекта контроля — сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины "поверхностный дефект" и "сквозной дефект".
Изображение, образованное пенетрантом, в месте расположения несплошности и подобное форме сечения у выхода на поверхность объекта контроля называют индикаторным рисунком (след). Применительно к несплошности типа единичной трещины вместо термина "индикаторный рисунок" допускается применение термина "индикаторный след".
Глубина несплошности — размер несплошности в направлении внутрь объекта контроля от его поверхности. Длина несплошности — продольный размер несплошности на поверхности объекта. Раскрытие несплошности — поперечный размер несплошности у ее выхода на поверхность объекта контроля.
Необходимым условием выявления дефектов нарушения сплошности материала типа полостных капиллярным контролем, имеющим выход на поверхность объекта и глубину распространения, значительно превышающую ширину их раскрытия, является относительная их незагрязненность посторонними веществами.
Следует различать максимальную, минимальную и среднюю глубину, длину и раскрытие несплошности. Если не требуется заранее оговаривать, какое из указанных значений размеров имеется в виду, то для исключения недоразумений следует принять термин "преимущественный размер". Для несплошностей типа округлых пор раскрытие равно диаметру несплошности на поверхности объекта.
Все методы капиллярного неразрушающего контроля по характеру взаимодействия проникающих пенетрантов с объектом контроля рассматриваются как молекулярные.
Капиллярные методы подразделяют на основные, использующие капиллярные явления, и комбинированные.
Основные капиллярные методы контроля подразделяют в зависимости от типа проникающего вещества на следующие:
1. Метод проникающих растворов — жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве проникающего вещества жидкого индикаторного раствора.
2. Метод фильтрующихся суспензий — жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве жидкого проникающего вещества индикаторной суспензии, которая образует индикаторной рисунок из отфильтрованных частиц дисперсной фазы.
Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на следующие:
- люминесцентный, основанный на регистрации контраста люминесцирующего в длинноволновом ультрафиолетовом излучении видимого индикаторного рисунка на фоне поверхности объекта контроля;
- цветной, основанный на регистрации контраста цветного в видимом излучении индикаторного рисунка на фоне поверхности объекта контроля;
- люминесцентно-цветной, основанный на регистрации контраста цветного или люминесцирующего индикаторного рисунка на фоне поверхности объекта контроля в видимом или длинноволновом ультрафиолетовом излучении;
- яркостный, основанный на регистрации контраста в видимом излучении ахроматического рисунка на фоне поверхности объекта контроля.
Комбинированные методы капиллярного контроля сочетают два или более различных по физической сущности методов контроля, один из которых обязательно жидкостный.
Комбинированные капиллярные методы контроля подразделяют, в зависимости от характера физических полей (излучений) и особенностей их взаимодействия с контролируемым объектом.
Капиллярно-электростатический метод основан на обнаружении индикаторного рисунка, образованного скоплением электрически заряженных частиц у поверхностной или сквозной несплошности неэлектропроводящего объекта, заполненного ионогенным пенетрантом.
Капиллярно-электроиндуктивный метод основан на электроиндуктивном обнаружении электропроводящего индикаторного пенетранта в поверхностных и сквозных несплошностях неэлектропроводящего объекта.
Капиллярно-магнитопорошковый метод основан на обнаружении комплексного индикаторного рисунка, образованного пенетрантом и ферромагнитным порошком, при контроле намагниченного объекта.
Жидкостный капиллярно-радиационный метод изучения основан на регистрации ионизирующего излучения соответствующего пенетранта в поверхностных и сквозных несплошностях, а капиллярно-радиационный метод поглощения — на регистрации поглощения ионизирующего излучения соответствующим пенетрантом в поверхностных и сквозных несплошностях объекта контроля.
ДЕФЕКТОСКОПИЧЕСКИЕ МАТЕРИАЛЫ
Капиллярный дефектоскопический материал применяют при капиллярном контроле и используют для пропитки, нейтрализации или удаления избытка проникающего вещества с поверхности и проявления его остатка с целью получения первичной информации о наличии несплошности в объекте контроля.
Дефектоскопические материалы выбирают в зависимости от требований, предъявляемых к объекту контроля, его состояния и условий контроля. Их укомплектовывают в целевые наборы, в которые входят полностью или частично взаимообусловленные дефектоскопические материалы, приведенные ниже.
Набор дефектоскопических материалов — взаимозависимое целевое сочетание дефектоскопических материалов: индикаторного пенетранта, проявителя, очистителя и гасителя.
Индикаторный пенетрант (пенетрант) И — капиллярный дефектоскопический материал, обладающий способностью проникать в несплошности объекта контроля и индицировать их.
Очиститель от пенетранта (очиститель) М — капиллярный дефектоскопический материал, предназначенный для удаления индикаторного пенетранта с поверхности объекта контроля самостоятельно или в сочетании с органическим растворителем или водой.
Гаситель пенетранта (гаситель) Г — капиллярный дефектоскопический материал, предназначенный для гашения люминесценции или цвета остатков соответствующих индикаторных пенетрантов на поверхности объекта контроля.
Проявитель пенетранта (проявитель) П — капиллярный дефектоскопический материал, предназначенный для извлечения индикаторного пенетранта из капиллярной полости несполошности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона.
Специализированные составы, предназначенные для выявления поверхностных дефектов методами капиллярной дефектоскопии, имеют следующие условные групповые обозначения:
- И1 — цветные пенетранты, имеющие характерный цветовой тон при наблюдении в видимом излучении;
- И2 — люминесцентные пенетранты, излучающие свет под воздействием длинноволнового ультрафиолетового излучения;
- И3 — люминесцентно-цветные пенетранты, имеющие характерный цветовой тон при наблюдении в видимом излучении и люминесцирующие под воздействием длинноволнового ультрафиолетового излучения;
- И4 — химические активные пенетранты, предназначенные для химического взаимодействия с соответствующими проявителями для образования специфического индикаторного следа, меняющего цвет, способность люминесцировать или образовывать продукты реакции, дающие информацию о наличии несплошностей;
- И5 — ахроматические пенетранты, которые под воздействием видимого излучения дают черное или серое показание;
- И6 — прочие пенетранты;
- M1 — органические очистители;
- М2 — водяные очистители;
- М3 — прочие очистители;
- Г — гасители пенетранта;
- П1 — порошковые проявители, сорбционные, представляющие собой сухой, преимущественно белый мелкодисперсный сорбент, поглощающий пенетрант;
- П2 — суспензионные проявители, сорбционные, представляющие собой белый сорбент, диспергированный в летучих растворителях, воде или быстросохнущих смесях, поглощающие пенетрант;
- П3 — красочные проявители (лаки), диффузионные, состоящие из пигментированного или бесцветного быстросохнущего жидкого раствора, связывающие, поглощающие пенетрант;
- П4 — пленочные проявители, диффузионные, представляющие собой бесцветную или белую накладную пленку с проявляющим липким слоем, поглощающим пенетрант;
- П5 — прочие проявители.
Очистители и гасители в зависимости от характера взаимодействия с индикаторным пенетрантом подразделяют на растворяющие, самоэмульгирующие и эмульгирующие при внешнем воздействии.
Индикаторные пенетранты подразделяют в зависимости от физического состояния и светоколористических признаков.
В зависимости от физических свойств бывают, различные пенетранты.
Магнитный пенетрант является суспензией, частицы твердой фазы которой имеют ферромагнитные свойства, а жидкий носитель представляет собой молекулярную или коллоидную дисперсию люминофора, красителя или другого индикатора.
Электропроводящий пенетрант имеет нормированную электрическую проводимость.
Ионизирующий пенетрант испускает ионизирующее излучение. Поглощающий пенетрант поглощает ионизирующее излучение.
Комбинированный пенетрант сочетает свойства двух или более индикаторных пенетрантов.
По технологическим признакам пенетранты можно разделить следующим образом.
Органосмываемый пенетрант смывается с поверхности объекта контроля органическими безводными антикоррозионными составами: растворителями, маслами или их смесями.
Водосмываемый пенетрант смывается водой или водосодержащими составами.
Пенетрант последующего эмульгирования образует эмульсию в воде, очищающей поверхность объекта контроля, после его предварительного взаимодействия с очистителем от пенетранта или ПАВ.
Обеспечивающий пенетрант, особенность которого заключается в том, что люминесценция или его цвет уничтожается специально подобранным гасителем.
Проявители подразделяют в зависимости от состояния.
Проявитель разделяют в зависимости от характера взаимодействия его с индикаторным пенетрантом.
Химически пассивный проявитель не меняет колористические свойства индикаторного пенетранта, а активный проявитель предназначается для химического взаимодействия с индикаторным пенетрантом с образованием специфического. индикаторного рисунка (следа), меняющего цвет, способность люминесцировать или давать продукты реакции, индуцирующие несплошность.
Магнитный проявитель, обычно сорбционный или диффузионный, содержит ферромагнитный порошок, выявляющий несплошности извлечением из индикаторного пенетранта и осаждением магнитного порошка в магнитном поле несплошности намагниченного объекта контроля.
ПРОВЕДЕНИЕ КАПИЛЛЯРНОГО КОНТРОЛЯ
ОСНОВНЫЕ ОПЕРАЦИИ
Основными операциями капиллярного неразрушающего контроля являются:
- подготовка объектов к контролю;
- обработка объекта дефектоскопическими материалами;
- проявление дефектов;
- обнаружение дефектов и расшифровка результатов контроля;
- окончательная очистка объекта.
Технологический режим операций контроля (продолжительность, температуру, давление) устанавливают в зависимости от используемого набора дефектоскопических материалов, особенностей объекта контроля и типа искомых дефектов, условий контроля и используемой аппаратуры.
Подготовка объектов к контролю включает очистку контролируемой поверхности от всевозможных загрязнений, удаление лакокрасочных покрытий, моющих составов и дефектоскопических материалов, оставшихся от предыдущего контроля, а также сушку объекта контроля.
Для предварительной очистки поверхностей применяют механическую очистку объекта контроля струей песка, дроби, косточковой крошки, другими диспергированными абразивными материалами или резанием, в том числе обработку поверхности шлифованием, полированием, шабровкой.
Для окончательной очистки контролируемых объектов используют следующие виды очисток:
- в парах органических растворителей;
- растворяющую очистку воздействием на объект контроля удаляющих загрязнения водяных или органических растворителей, в том числе посредством струйной промывки, погружения, протирки;
- химическую очистку водными растворами химических реагентов, взаимодействующих с удаляемыми загрязнениями, не повреждая объект контроля;
- электрохимическую очистку водными растворами химических реагентов с одновременным воздействием электрического тока;
- ультразвуковую очистку органическими растворителями, водой или водными растворами химических соединений в ультразвуковом поле с использованием режима ультразвукового капиллярного эффекта. Ультразвуковой капиллярный эффект — явление аномального увеличения высоты и скорости подъема жидкости в капиллярной полости под действием ультразвука;
- анодно-ультразвуковую очистку водными растворами химических реагентов с одновременным воздействием ультразвука и электрического тока;
- тепловую очистку путем прогрева при температуре, не вызывающей недопустимых изменений материала объекта контроля;
- сорбционную очистку смесью сорбента и быстросохнущего органического растворителя, наносимой на очищаемую поверхность выдерживаемой и удаляемой после высыхания.
Необходимые способы очистки, их сочетание и требуемую чистоту контролируемых поверхностей определяют в технической документации на контроль. При высоком классе чувствительности контроля предпочтительны не механические, а химические и электрохимические способы очистки, в том числе с воздействием на объект контроля ультразвука или электрического тока. Эффективность этих способов обусловлена оптимальным выбором очищающих составов, режимов очистки, сочетанием и последовательностью используемых способов очистки, включая сушку.
При поиске сквозных дефектов в стенках трубопроводных систем, баллонов, агрегатов и аналогичных полостных объектов, заполненных газом или жидкостью и находящихся под избыточным давлением, полости таких объектов освобождают от жидкости и доводят давление газа в них до атмосферного.
Этап обработки объекта дефектоскопическими материалами заключается в заполнении полостей дефектов индикаторным пенетрантом, удалении его избытка и нанесении проявителя.
Для заполнения дефектов индикаторным пенетрантом применяют следующие способы:
капиллярное, самопроизвольное заполнение полостей несплошностей индикаторным пенетрантом, наносимым на контролируемую поверхность смачиванием, погружением, струйно, распылением с помощью сжатого воздуха, хладона или инертного газа;
вакуумное заполнение полостей несплошностей индикаторным пенетрантом при давлении в их полостях менее атмосферного;
компрессионное заполнение полостей несплошностей индикаторным пенетрантом при воздействии на него избыточного давления;
ультразвуковое заполнение полостей несплошностей индикаторным пенетрантом в ультразвуковом поле с использованием ультразвукового капиллярного эффекта;
деформационное заполнение полостей несплошностей индикаторным пенетрантом при воздействии на объект контроля упругих колебаний звуковой частоты или статического нагружения, увеличивающего раскрытие несплошностей.
Для выявления сквозных дефектов пенетрант допускается наносить на поверхность, противоположную контролируемой.
Температура контролируемого объекта и индикаторного пенетранта, а также продолжительность заполнения полостей дефектов должны быть в пределах, указанных в технической документации на данный дефектоскопический материал и объект контроля.
Избыток индикаторного пенетранта удаляют или гасят на контролируемой поверхности одним из следующих способов:
- протиранием салфетками с применением в необходимых случаях очищающего состава или растворителя;
- промыванием водой, специальным очищающим составом или их смесями; погружением, струйно или распылением;
- обдуванием струей песка, дроби, косточковой крошки, древесных опилок или другого абразивного очищающего материала;
- воздействием на пенетрант гасителем люминесценции или цвета.
Проявитель наносят указанными способами:
- распылением жидкого проявителя струей воздуха, инертного газа или безвоздушным методом;
- электрораспылением проявителя в электрическом поле струей воздуха или механическим;
- созданием воздушной взвеси порошкообразного проявителя в камере, где размещен объект контроля;
- нанесением жидкого проявителя кистью, щеткой или заменяющими их средствами;
- погружением объекта контроля в жидкий проявитель;
- обливанием жидким проявителем;
- электроосаждением проявителя путем погружения в него объекта контроля с одновременным воздействием электрического тока;
- посыпанием порошкообразного проявителя, припудривание или обсыпание объекта контроля;
- наклеиванием ленты пленочного проявителя прижатием липкого слоя к объекту контроля.
При использовании самопроявляющихся, фильтрующихся и других подобных индикаторных пенетрантов проявитель не наносят.
Проявление следов дефектов представляет собой процесс образования рисунка в местах наличия дефектов, для чего используют один из способов проявления индикаторных следов:
- выдержку объекта контроля на воздухе до момента появления индикаторного рисунка;
- нормированное по продолжительности и температуре нагревание объекта контроля при нормальном атмосферном давлении;
- выдержку в нормированном вакууме над поверхностью объекта контроля;
- упругодеформированное воздействие на объект посредством вибрации, циклического или повторного статического его нагружения.
Обнаружение дефектов представляет собой сочетание или отдельное использование способов наблюдения и регистрации индикаторного следа.
Способы обнаружения индикаторного следа:
- визуальное обнаружение, в том числе с применением оптических или фотографических средств, оператором видимого индикаторного следа несплошности, выявленной люминесцентным, цветным, люминесцентно-цветным и яркостным методами;
- фотоэлектрическое обнаружение и преобразование с применением различных средств косвенной индикации и регистрации сигнала видимого индикаторного следа несплошности, выявленной люминесцентным, цветным, люминесцентно-цветным и яркостным методами;
- телевизионное обнаружение, преобразование в аналоговую или дискретную форму с соответствующим представлением на экран, дисплей, магнитную пленку сигнала от видимого индикаторного следа несплошности, выявленной люминесцентным, цветным, люминесцентно-цветным и яркостными методами;
- инструментальное обнаружение косвенными приемами сигнала от невидимого глазом индикаторного следа несплошности или сигнала от индикаторного пенетранта, находящегося внутри полости несплошности.
- Окончательную очистку объектов контроля осуществляют одним или несколькими технологическими приемами удаления проявителя, а при необходимости и остатков индикаторного пенетранта:
- протиранием салфетками в необходимых случаях с применением воды или органических растворителей;
- промыванием объекта в воде или органических растворителях с необходимыми добавками и применением вспомогательных средств, в том числе щеток, ветоши, губок;
- ультразвуковой обработкой объекта в воде или органических растворителей с необходимыми добавками;
- анодной электрохимической обработкой объекта растворами химических реагентов с одновременным воздействием электрического тока;
- обдуванием покрытого проявителем объекта абразивным материалом в виде песка, крошки или гидроабразивными смесями;
- выжиганием проявителя путем нагревания объекта до температуры сгорания проявителя;
- отклеиванием ленты пленочного проявителя от контролируемой поверхности с индикаторным следом несплошности;
- отслоением слоя проявителя от контролируемой поверхности с индикаторным следом несплошности.
Объекты, прошедшие капиллярный контроль, следует подвергать антикоррозионной защите.
ЧУВСТВИТЕЛЬНОСТЬ И ОЦЕНКА РЕЗУЛЬТАТОВ КОНТРОЛЯ
Чувствительностью капиллярного НК называют качество капиллярного неразрушающего контроля, характеризуемое порогом, классом и дифференциальной чувствительностью средства контроля в отдельности либо целесообразным их сочетанием.
Порог чувствительности капиллярного НК — раскрытие несплошности типа единичной трещины определенной длины, выявляемое с заданной вероятностью по заданным геометрическому или оптическому параметрам следа. Верхнему порогу чувствительности соответствует наименьшее выявляемое раскрытие, а нижнему — наибольшее.
Геометрический параметр индикаторного рисунка — отношение среднего значения ширины индикаторного следа к раскрытию выявленной несплошности.
Оптический параметр индикаторного рисунка — отношение среднего значения яркости индикаторного следа к среднему значению яркости фона.
Фон поверхности — бездефектная поверхность объекта контроля, обработанная дефектоскопическими материалами.
Дифференциальная чувствительность средства капиллярного НК — отношение изменения оптического и (или) геометрического параметра индикаторного следа к вызывающему его изменению раскрытия при неизменной глубине и длине несплошности типа единичной трещины.
Класс чувствительности капиллярного НК — диапазон значений преимущественного раскрытия несплошности типа единичной трещины определенной длины при заданных условиях вероятности выявления, геометрическом и (или) оптическом параметрах следа.
Класс чувствительности контроля определяют в зависимости от минимального размера выявляемых дефектов. Постигаемую чувствительность в необходимых случаях определяют на натурных объектах или искусственных образцах с естественными или имитируемыми дефектами, размеры которых уточняют металлографическими или другими методами анализа.